On the Local Solvability of Darboux’s Equation

نویسندگان

  • Marcus A. Khuri
  • MARCUS A. KHURI
چکیده

We reduce the question of local nonsolvability of the Darboux equation, and hence of the isometric embedding problem for surfaces, to the local nonsolvability of a simple linear equation whose type is explicitly determined by the Gaussian curvature. Let (M, g) be a two-dimensional Riemannian manifold. A well-known problem is to ask, when can one realize this locally as a small piece of a surface in R? That is, if the metric g = gijdx dx is given in the neighborhood of a point, say (x, x) = 0, when do there exist functions zα(x , x), α = 1, 2, 3, defined in a possibly smaller domain such that g = dz 1 + dz 2 2 + dz 2 3? This equation may be written in local coordinates as the following determined system

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on unique solvability of the absolute value equation

It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...

متن کامل

Numerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function

A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...

متن کامل

Local Solvability in Top Degree of the Semilinear Kohn Equation

We study the local solvability problem for a class of semilinear equations whose linear part is the Kohn Laplacian, acting on top degree forms. We also study the validity of the Poincaré lemma, in top degree, for semilinear perturbations of the tangential Cauchy-Riemann complex.

متن کامل

Minimal solution of fuzzy neutrosophic soft matrix

The aim of this article is to study the concept of unique solvability of max-min fuzzy neutrosophic soft matrix equation and strong regularity of fuzzy neutrosophic soft matrices over Fuzzy Neutrosophic Soft Algebra (FNSA). A Fuzzy Neutrosophic Soft Matrix (FNSM) is said to have Strong, Linear Independent (SLI) column (or, in the case of fuzzy neutrosophic soft square matrices, to be strongly r...

متن کامل

ct 2 00 7 The wave equation on singular space - times

We prove local unique solvability of the wave equation for a large class of weakly singular, locally bounded space-time metrics in a suitable space of generalised functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009